In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques.
نویسندگان
چکیده
An in-depth characterization of the Aspergillus niger glucoamylase (glaA) promoter performance was carried out on defined medium employing multi-well high-throughput screening as well as controlled batch and fed-batch bioreactor culture techniques with GFP as a fluorescent reporter protein. A variety of metabolizable carbon substrates and non-metabolizable analogs were screened with regard to their effect on the glaA expression system. The results clearly demonstrate that only starch and its hydrolytic products, including glucose, act as inducers. However, induction of the glaA expression system through the monosaccharide glucose is significantly lower compared to starch and the higher molecular weight starch degradation products. All other 26 carbon substrates tested do not induce, or even, as in the case of the easily metabolizable monosaccharide xylose, repress glaA-promoter controlled gene expression in the presence of the inducing disaccharide maltose with an increase of repression strength by increasing xylose concentrations. The complex effect of glucose on glaA-promoter controlled expression was also analyzed using non-metabolizable glucose analogs, namely 5-thio-glucose and 2-deoxyglucose, which were identified as novel and potent inducers of the glaA expression system. The results show that the induction strength depends on the inducer concentration with a maximum at defined concentrations and lower induction or even repression at concentrations above. Moreover, controlled fed-batch cultivations using a high maltose feed rate with concomitant extracellular accumulation of glucose resulted in lower levels of the reporter protein compared to cultures with a low-maltose feed rate without extracellular glucose accumulation, thus supporting the conclusion that increasing the glucose concentration beyond a critical point reduces the induction strength or may even cause repression. This way, the speed of polymer hydrolysis, glucose uptake and intracellular breakdown can be fine-tuned for optimal fungal growth and the metabolic burden for glucoamylase synthesis can be limited adequately in response to nutrient availability.
منابع مشابه
The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate
BACKGROUND The filamentous fungus Aspergillus niger is well-known as a producer of primary metabolites and extracellular proteins. For example, glucoamylase is the most efficiently secreted protein of Aspergillus niger, thus the homologous glucoamylase (glaA) promoter as well as the glaA signal sequence are widely used for heterologous protein production. Xylose is known to strongly repress gla...
متن کاملThe promoter of the glucoamylase-encoding gene of Aspergillus niger functions in Ustilago maydis.
Promoter sequences from the Aspergillus niger glucoamylase-encoding gene (glaA) were linked to the bacterial hygromycin (Hy) phosphotransferase-encoding gene (hph) and this chimeric marker was used to select Hy-resistant (HyR) Ustilago maydis transformants. This is an example of an Ascomycete promoter functioning in a Basidiomycete. HyR transformants varied with respect to copy number of integr...
متن کاملA truncated glucoamylase gene fusion for heterologous protein secretion from Aspergillus niger.
The secreted yield of hen egg-white lysozyme (HEWL) from the filamentous fungus Aspergillus niger was increased 10-20-fold by constructing a novel gene fusion. The cDNA sequence encoding mature HEWL was fused in frame to part of the native A. niger gene encoding glucoamylase (glaA), separated by a proteolytic cleavage site for in vivo processing. Using this construct, peak secreted HEWL yields ...
متن کاملGenetic transformation of Aureobasidium pullulans.
Aureobasidium pullulans strain Y117 was transformed to hygromycin resistance using plasmid pDH33, which contains the bacterial hygromycin B phosphotransferase gene (hph) fused to promoter elements of the Aspergillus niger glucoamylase gene (glaA). Southern hybridizations of transformants revealed multiple, integrated copies of the vector. The glaA promoter was not induced by starch in A. pullul...
متن کاملTHE PRODUCTION OF GLUCOAMYLASE BY ASPERGILLUS NIGER UNDER SOLID STATE CONDITIONS (RESEARCH NOTE)
In this study, Glucoamylase production by Aspergillus Niger was investigated under solid state conditions with low cost by-products of agricultural processes as substrate. Highest enzyme production was observed when a combination of wheat bran (WB) and corn flour (CF) was used as compared to WB+ rice bran, WB+ rice flour and WB alone. Different additions of (CF) were tested and WB+ 10% CF showe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biotechnology
دوره 135 3 شماره
صفحات -
تاریخ انتشار 2008